Characterization with barium of potassium currents in turtle retinal Müller cells.

نویسندگان

  • E Solessio
  • D M Linn
  • I Perlman
  • E M Lasater
چکیده

Müller cells are highly permeable to potassium ions and play a crucial role in maintaining potassium homeostasis in the vertebrate retina. The potassium current found in turtle Müller cells consists of two components: an inwardly rectifying component and a linear, passive component. These currents are insensitive to broadband potassium channel blockers, tetraethylammonium (TEA) and 4-aminopyridine (4-AP) and well blocked by barium. Differential block by the polyamine spermine suggests that these currents flow through different channels. In this study, we used barium ions as a probe to investigate the properties of these currents by whole cell, voltage-clamp recordings from isolated cells. Current-voltage (I-V) relationships generated from current responses to short (35 ms) and long (3.5 s) voltage pulses were fit with the Hill equation. With extracellular barium, the time course of block and unblock was voltage and concentration dependent and could be fit with single exponential functions and time constants larger than 100 ms. Blocking effects by extracellular barium on the two types of currents were indistinguishable. The decrease of the outward current originates in part due to charge effects. We also found that intracellular barium was an effective blocker of the potassium currents. The relative block of the inward rectifier by intracellular barium suggests the existence of two "apparent" binding sites available for barium within the channel. Under depolarizing conditions favoring the block by internal polyamines, the Hill coefficient for barium binding was 1, indicating a single apparent binding site for barium within the pore of the passive linear conductance. The difference in the steepness of the blocking functions suggests that the potassium currents flow through two different types of channels, an inward rectifier and a linear passive conductance. Last, we consider the use of barium as an intracellular K(+) channel blocker for voltage-clamp experiments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spermine mediates inward rectification in potassium channels of turtle retinal Müller cells.

Retinal Müller cells are highly permeable to potassium as a consequence of their intrinsic membrane properties. Therefore these cells are able to play an important role in maintaining potassium homeostasis in the vertebrate retina during light-induced neuronal activity. Polyamines and other factors present in Müller cells have the potential to modulate the rectifying properties of potassium cha...

متن کامل

Dystrophin Dp71 is critical for the clustered localization of potassium channels in retinal glial cells.

The Müller cell is the principal glial cell of the vertebrate retina. The primary conductance in Müller cells is the inwardly rectifying potassium channel Kir4.1 (BIR10 and KAB-2), which is highly concentrated at the endfeet at the vitreal border and to processes enveloping blood vessels. Such asymmetric and clustered distribution of Kir4.1 channels in Müller cells is thought to be critical for...

متن کامل

Ablation of Kcnj10 expression in retinal explants revealed pivotal roles for Kcnj10 in the proliferation and development of Müller glia

PURPOSE We previously found that Kcnj10, an inwardly-rectifying potassium channel, is a gene expressed in c-kit-positive retinal progenitor cells on P1. The shRNA-mediated screening of the functions of the genes for retinal development in retinal explant culture suggested a role for Kcnj10 in the differentiation of 23Müller glia. In the present study, we extended the work and focused on analyzi...

متن کامل

Basolateral potassium channel in turtle colon. Evidence for single-file ion flow

Treatment of the apical surface of the isolated, ouabain-inhibited turtle colon with the polyene antibiotic amphotericin B permitted the properties of a barium-sensitive potassium conductance in the basolateral membrane to be discerned from the measurements of transepithelial fluxes and electrical currents. Simultaneous measurements of potassium currents and 42K fluxes showed that the movement ...

متن کامل

Potassium conductance block by barium in amphibian Müller cells.

The effect of barium on Müller cell K+ conductance was evaluated in the tiger salamander using enzymatically dissociated cells and cells in situ (retinal slice and isolated retina). Barium effects were similar in both cases. In dissociated cells, 50 microM Ba2+ depolarized cells 14.7 mV and raised cell input resistance from a control value of 16.0 to 133 M omega. For cells in situ, 50 microM Ba...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 83 1  شماره 

صفحات  -

تاریخ انتشار 2000